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We study the rate of uniform approximation by Nortund means of the rec-
tangular partial sums of the double Fourier series of a function f(x, )) belonging to
the class Lipa, 0 <a < 1, on the two-dimensional torus —n <, y < . As a special
case we obtain the rate of uniform approximation by double Cesiro means.
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1. NORLUND SUMMABILITY OF DOUBLE NUMERICAL SEQUENCES

Let 2= {p,:j, k=0,1,.} be a double sequence of nonnegative num-
bers, Poo > 0. Set
Po=Y Y pp  (mn=01..)
0

j=0k=

Given a double sequence {s5,:/,k=0,1,..} of complex numbers, the
Norlund means ¢, are defined by

1 m n

Y Y P g kSi (m,n=0,1,.).

tmn:
Pmn‘/':() k=0

* This research was completed while the first author was a visiting professor at Indiana
University, Bloomington, Indiana, U.S.A., during the academic year 1983-1984.
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342 MORICZ AND RHOADES

We say that the Norlund method generated by 2, or simply the .#-
method of summability, is regular if whenever s,,, tends to a finite limit s as
m, n — oo and the s, are bounded for m, n=0, 1,... then 1, also tends to
the same limit s as m, n — oC.

THEOREM A [3.p.39]). If #={pu=0:j, k=0, 1...:py>0}, then the
necessary and sufficient conditions for the regularity of I/w H-method of sum-
mability are

1 "
llm D Z P j.k :0 (/:0.. 1.., 1l 2/)
mon s ox Pum s
and
] m
m 5= Z e =0 (k=0 1l.:n>k).

The (C, f, y)-summability, f, 7> —1, is a particular case of the Nor-
lund summability, where 2 = { p, } is given by

pp=A% T4 (k=0,1,.)

(even this is a factorable case), where

. o+ _(9(+l)(oc+2)~--(oc+/)
)T Il

for I=1,2,..and 4;=1. Then, as is known,

P,,=A"A; (m,n=0,1,.).

nt "

Furthermore, there exist two positive constants C, and C, such that

<C,  (I=0,1.;a>-1)

(see, e.g., [5, p-77]).

2. NORLUND MEANS FOR DOUBLE FOURIER SERIES

Let f(x, v) be a complex-valued function defined on the two-dimensional
real torus Q: —n<x<n, —w< y<n If fe L'(Q), then its double Fourier
series 1s

Z Z € eiUs TR (2.1)
v k= -
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where

= (27: f f S, 0)e " Rdsdr (jk=..,—1,0,1,..)

We associate with (2.1) the double sequence of (symmetric) rectangular
partial sums

m

Snm(x’ y) = Z Z ( el(IYJrA‘) (m, n= 0, 1,)

j= -mk= -

Now, the Norlund means for (2.1) are defined as those for the sequence

{Srnn(x’ .}}) }:

l " n
{nm ':T Z 2 pmf/n AS‘,/‘(’C 1) (m,n:O, ls)

mn j

The representation

1 pn on
il V== [ [ foxts, v 40K, s 0 ds di (22)
n

b4 k4

plays a central role, where the Norlund kernel K, (x, t) is defined by

m

S Y po o (DD (=01,  (23)

mnj=0k=0

K

HIH P

and D(s) and D,(t) are the Dirichlet kernels in terms of s and ¢, respec-
tively, e.g.,

; _sin(j+ Ds .
- - = =0, 1,..).
2 g‘ 2sinis U )
From (2.2) it follows immediately that
4 n n
s 1) =12 V== [ [ bls, D Kls, D dsdi (24)
" Yo Yo

where

P (s, D=3{fx+sy+ D)+ f(x=5y+1)+f(x+s,y—1)
+ flx—s, y—1)—4f(x, y)}.

640/50/4-4
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We say that the function f satisfies a Lipschitz condition of order x> 0.
in symbols f'e Lipa, if

w(d; f)= sup sup. flx+s y+1)— flx, v

(voeQ 1sta 22 s
<CO (6>0) (2.5)

with a constant C independent of 4. The quantity w(d; f) is called the
(total) modulus of continuity of f. As usual, we consider f as defined over
the two-dimensional real Euclidean space R? extended periodically in each
variable (with period 2m).

Clearly, if feLipa for some a>0, then f is necessarily continuous
everywhere. Only the case 0 <o < | is interesting. If x> 1, then ¢f/0x and
&f7¢v exist and are zero everywhere, so / must be a constant.

Condition (2.5) can be rewritten as

flx+s, y+1)—f(x, )| SC{s”+ 17}
for every real x, v, s, and ¢; or equivalently,
Sl s, v+ 0= 1 ISP+ 1), (2.6)
Indeed, for every real s, f and 0 <o <2
L2 2 s T <25+ 7

Here the first inequality is the Minkowski one, while the second is trivial
Condition (2.6) obviously yields

¢ lss DI < CUs1™ + 11]7). (2.7)

During the proofs we actually use inequality (2.7) which is, in certain cases,
weaker than (2.6).

3. MAIN RESULTS

We will use the notations

APy =Py —Pi+1x>
A P =P = Pjky1s
and

APk =Pk = Piv1k— Pikrr T Pivinen (s k=0, 1,..).
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The double sequence {p,} is nondecreasing if 4,,p, <0 and 4y, p, éO
and is nonincreasing if 4,,p, >0 and 4,, p, =0 for every j, k=0, 1,...
also set

n
qmn = Z pmk ’
Pon

R =

1 "
nm = _1)_ Z p[n (m7 n= 07 l’)

mn j=

First we consider the case where p, is nondecreasing. Then

i n

('" + ] qnm: P Z Z pm/\

mnj=0 k=0

1 m n

>3 Y s, (1)

it j—0 K =0
and similarly,

(n+1)r,, =1 (3.2)
We also have

P,.<(m+1)n+1)p,., (m,n=0,1,.).

In the sequel, we need the opposite inequality:

(I’VI + 1 )(n + 1 ) [)IHIH
P

=0(1). (3.3)

nun

This condition is satisfied, for example, if p, has a power growth both in j
and in k: 1e.,

pu=U+1l(k+1)y for some B,y = 0.
Now, condition (3.3) implies that

m+1 "

(m + 1 ) G n :T Z Pk
. k=0

1
<P 4 1) prn=0(1) (3.4)

mn

and

(n+1)r,,=0(1). (3.5)
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In particular, the conditions of regularity are satisfied:

hm Y= lim r,, =0.

LR — LT —

mn

Thus, we may assume that

Gon < T and Fon <TC (m,n=0,1,.).

THEOREM 1. Let {p,>0:j,k=0,1,..} be a nondecreasing double
sequence such that 4., p, is of fixed sign and condition (3.3) is satisfied. If
felipa, O<a< ], then

Sup |,mn( ) f(\ })‘ (qmn+rmn) lf 0<a< 1’

{(v.r)eQ

=0 <q,,,,, log i +r,.log _n_) if a=1
| " (3.6)
Second we treat the case where p, is nonincreasing. Then
(m+1)gq,,<1 and n+D)r,. <1 (3.7)
(cf. (3.1) and (3.2)).

THEOREM 2. Ler {p;>0:/,k=0,1,..; po>0} be a nonincreasing
double sequence such that 4, p, is of fixed sign. If f € Lipa, 0 <a< 1, then

sup |1,,,(x, y)—flx, y)l

(v.y)eQ
NN Py
{P 2 Z( D7 k1 1) (j+1)(k+1)““)}' (38)

mnj=0k=0

In the special case where

lim p,, >0, (3.9)
we have
b P o) and —— —o0q1)
(m + 1) qnm pmm (n + 1) rmn

and the right-hand side of (3.8) reduces to that of (3.6).
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COROLLARY 1. Let {p,>0: j,k=0,1,..} be a nonincreasing double
sequence such that 4y, p, is of fixed sign and condition (3.9) is satisfied. If
feLipa, 0 <a< 1, then statement (3.6) holds.

The approximation rate for (C, 8, y)-summability immediately follows
from Theorem 1 (for i,y > 1) and Theorem 2 (for a < f, y<1).

CorROLLARY 2. If felipa, O<a<]1, and f,y>=a, then

" #H

YN AR AL L su(x p)— f(x, p)

(x. "EQ AmAn/ OAk=0
0( : + : ) i f> dy>
= I o an o,
m+ 1)t 1) ! 4

log(m+2) 1 ) o
0( (m+1)* +(n+1)1 if B=oaandy>a,

=O<10g(m+2)+log(n+2)> if f=y=ua

(m+1)* (n+1)*

Theorem | is an extension of that announced by T. Singh (see [2,
p. 3647) from the one-dimensional case to the two-dimensional case, while
Theorem 2 is an extension of that in [1]. Our method clearly applies to
higher-dimensional Fourier series as well. The extensions of our results
to d-dimensional cases, where 4 i1s an integer greater than 2, are
straightforward.

4. ESTIMATION OF THE NORLUND KERNEL

We will use some well-known estimates. For j=0, 1,...
[D(s}<j+1 for every s. (4.1)

Fora, b=0, 1,..;a<bh,

Zh:sm 1 S_cosas—cos(b+l)s
~ *3)°= 2sinds ’

whence, on account of the inequality

SIS Z2  for O<s<o, (42)

=

S T 2
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we obtain
| b i Fia
Y sin <j+ ) < - for O<s<n. (4.3)
jou $
Similarly,
b cosas—cos(b+1)s
Ds)| = —
/;u {5) (2 sind )°
7’ .
< o for O<s<m. (4.4)

We note that 1/(h+1)3"_ D,(s) is the Fejér kernel (cf. [5, pp. 49, 887).
The Norlund kernel K, (s, 1) is defined by (2.3).

LEmMa 1. Let {p; >0;j, k=0, 1,.} be a nondecreasing double sequence
such that A\, p, is of fixed sign. Then

K, (s, ) <(m+1)n+1) for every s and 1,
7-(2 1 n v
g? z (k+ l)pnul k _fOI'(JUer}'tandO<S<n,
nm ,l\ =0
7[2 1 m . .
g— Z (/+1)pm JA fOI‘everysandO<t§n,
2 an ) | ’
4
< 3Z Ppm” forevery0<s, i<m. (4.5)

mn

Proof. By (4.1),

Z Z pm o - I\lD(s | |Dk(t)‘

| K’n”(é t |

Pmn, O k=0
1 m ”n )
gP Z Z (]+1)(k+1)pm7j.n k
mni=0k=0
=5 L L Pus(m+Dn+1),

mni—0 k=0

which is (4.51). The monotonicity of the p, is not used here.
Again from (4.1),

n m

manmn(‘ t)l Z Z pm - jn —*ij(S) k(t)|
k=01j=0
< Y k+DL Y Po i xDUS) (4.6)
k=0 j=0
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For each k, we rewrite the inner sum by an Abel’s transformation (see, e.g.,
[5, p.3]) as

"

zpmf/n kD( Zdlopm—/n kzD/(S

i=0 j=1 =0

m

+ Pon—k Z D (s)

=0

whence, by (4.4) and the assumption that p, is nondecreasing in j, we get

2 m
T
<_2?( Z Alopirlj./1k+p0,izk>

j=1

m

Z Pm jon - /\'D/'(S)

j=0

2
8

:_2? P k- (47)

Combining (4.6) and (4.7) yields (5.411).
Equation (4.5iii) can be shown in a similar way.

To prove (4.5iv), we first perform a double Abel’s transformation (see
c.g., [4]):

an Kmn(“" f)

n n k=1

Z Z AP jn ok Z D Z D, (1)

j=1k=1 h=0

" J—1

- Z Al()pln 7.0 Z Du Z
Z

j=1

m

Z Aot Pon « Z D,(s

k=1

a=0

nl

+Poo 2. Z D,(1), (4.8)

a=10 bh=0

whence, by (4.4),

an|Kmn(S7 t)l

4 m n

77.'
< 2.2 A m— jn g
4S1_t_ < j;] kgl ] 1t p A /\l

m -~

+ Z Ao P o+ Z Ao1 Pon— k+P00> (4.9)

J=1 k=1
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Since 4,, py is of fixed sign,

" n m "

Z z IAllpm N kl: Z z Allpm jn ok
je=1k=—1 je= 1 k=1
= lplnn P Pon— p()()i'

Returning to (4.9), if 4, p, >0,

4
pis
Pmn len(Ss [)l S 4?2[2 [(pmn - pm() - p()n + pOO)

+ (Do — Poo) + (Pon— Poo) + Poo]

4
o T[ pmn

487

while if 4,, p,, <0,
7[4
an len(Sa ’)' < 48’212 [( _pmn + pm() + p()n - pOO)

+(Pwo— Poo) + (Pow— Poo) + Poo

4

Fis
4 3.2 (‘pmn+2pn10+2p()n—2p()())
St

3n*
< 4Y2I2 P

LemMa 2. Let {p;=20:j,k=0,1,.; poo>0} be a nonincreasing double
sequence such that A, p, is of fixed sign, and let 0 = [1/s], v=[1/t] where

[-] means the integral part. Then

| Knls, DI <(m+1)(n+1) for every sandt,

tandQ0<s<m,

n

1 1 7
<zr£ti_) Y ok+1) Y piax for every

Jorevery sand0<it<m,

forevery 0<s, t<m.
(4.10)

= 4 P,,st
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Proof. Equation (4.10i) coincides with (4.5i), which holds without any
monotonicity condition, as we remarked in the proof of Lemma 1.
By (4.6) and (4.2},

"

P,,”,|K,.,,,,(S, t)' < Z k + 1

Z P in_xDi(5)

k=0
T n m . 1
<= 2 (k+1) Z Pya_isin(m—j+=)s. (411)
25, = — 2
A simple estimate shows that, for each &,
" . 1
Z p/.n 4 SIn (ﬂ’l _/+—> S
=0 2
- 1
< Z p/>~”’/\'+ Z p/n A51n<m ]+ ) (412)
j=0 j=0c+1
Using an Abel’s transformation,
1 . ) 1
Z p/‘n——kSIH m‘f"’" s
j=a+1 2
-1 j ) 1
= Z Ao Pin & Z sin <M—l+—>s
j=0+1 I=0+1 2
m . 1
+ psz k Z Sin <m - l + 5) S. (413)

l=a+1

From (4.3), the fact that p, is nonincreasing in j, and that 1/s<o¢ + 1, we

can conclude that

m

1
Z p/.n/\'Sin<m_j+§>

T
s <;prr+l.n k

Jj=0+1
n(6+1)pa+lrl k\nzp/n k- (414)
Now, the combination of (4.11}), (4.12), and (4.14) provides (4.10ii).
Equation (4.10iii) can be deduced similarly.
To prove (4.10iv), by (4.2) we begin with the inequality
P”Y" IKmn(s7 t)l
5 5 puDu o) Dy ult)
j=0k=0
T moz . 1 . 1
<—| Y Y pusin{m—j+=)ssin(n—k+=)t]. (4.15)
ast| 202 2 2
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We divide the double sum into four parts:

0 " . 1 . 1\
Y > picsin <m~j+—> s sin <n/\'+;)1
j= 0 k=0 2 e

m

1
Y pusin (m —j+ 2)

J—-a-+1

" l
Y p,A sin <n——k+—>r
k=1+ 2

<YYot Z

j=0k=0 -0

+ 2
j=

0

" ) 1 . l
+ Y Z Py sin <mj+—> s sin <nk+—>t
j=a+ 1l k=1t+1 2 2
=P, +A +4,.+4;, say. (4.16)

For A,, we can perform an Abel’s transformation similar to (4.13) and
conclude that

" . ] 1
Y pusin (m — +—> s

j=o+ 1 2
! 1
Y sin <m—/+—>s
I=a+1 2
1" I
Z sin (m—/+—> s
l=a+ 1 2
i

<:1)0+1A\ o+ 1) p, 4 < nZP/A

j=0

mo|

< Z Am/’/k

J=a ]

+ Pk

(cf. (4.14)), which results in

A <P .. (4.17)
Analogously,

A.<nP,,. (4.18)

For 4., we perform a double Abel’s transformation (cf. (4.8)):

"

1 !
) Z P sin (in—j+§>xsin <nk+§>,

j=a+ 1 k=1+1

m- k

! 1 1
= Z Z Adypi Y sin(m*a+§>s Y sin(n—b+§>r

j=a+ 1 k=1+1 a-=0atl h=1+1
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m_ | / n
+ Y Awbn X Sin<m—a+%>s Y Sin(n—b+%>t

j=c+1 a=ag+1 b=1+1

n—1 m ] k 1
+ Y Ada P Y, sin(m—a+§>s Y sin(n—b+§>t

k=1+1 a=a+ 1 h=t+1

m 1 n 1
+ Pon 2 Sin<m‘a+§>5 Y sin<n4b+§>t,

a=a+1 h=14+1

whence, by (4.3),

m N 1 |
Z Z [),-kSin<mvj+§>ssin<n_k+§>,

j=a+ 1 k=141

2 m " mo 1 n—1
b
<_{ Z Z Ay pi| + Z Ay Pt Z A()lpmk+pmn}
st j=a+ l hA=1+1 j=0+1 A=1+1
7'C2 .
:';?pn+l.r+l if 4,,pu=0,

5

b4
:;(72pmn+2p(7+1.n+2pm.r+] _pa+l.r+l)

3n? i
S_—Yt—pn+l.r+l if A4y, pu<0.
Thus, in any case,

5

3
AT P DEHD Py
<317 ) Y pu=3nP,.. (4.19)
Putting (4.16)~(4.19) together yields

n n 1 1
Y Y pusin <m—j+§)ssin (n—k+§>t

j=0k=0

<(1+2r+ 322 P,,.

Hence (4.15) immediately implies (4.10iv).
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5. PROOFS OF THE THEOREMS

Proof of Theorem 1. We start with representation (2.4), decomposing
the integral as follows:

2

n ) .
e |Inm(x’ V) V.f(-\ﬁs ,V)|

4
Ymn T s Yo Ymn n
< LT

0] 0 0 4]

Ynn Fmn

~T

[0 et 01K 0 s

Ynn ~ T'mn

=L+1L,+1,+1,, say. (5.1)

Each time ¢ (s, 1) is estimated by (2.7) and the appropriate estimate of
Lemma 1 is substituted forthe kernel K, (s, t).
By (4.5), for a >0

Fmn

11<(m+1)(n+1)fq"”’j (s* + %) ds dt

0 0

(m+ )+ 1) Gt i G + T un)-
o+ 1

By (3.4) and (3.5),
]l = O(q:m + r:;m)' (52)

By (4.5ii),

1

7.[2 n n Fom §% 4 1%
L <— k+1
2 2 Z ( + )pm,n -k j j S2 dt dss

mn k=0 Grn © 0

P

whence for 0<a <1,

|,

rm" n qa ri
I, < k+1 o mn mn ,
2 7P Z( +1) p., l‘(l—a+a+1>

mnt mn k=0

while for a =1,

2 n

T r T
12<—2_

1
— (k+1) pon- (qmn log—+- ’mn>'
qmann kgo ‘ 9mn 2




NORLUND MEANS FOR DOUBLE FOURIER SERIES 355

Using (3.5),

n

rmn n
P Z (k+1)pm,n—k< n+1 Z pmk
qmn mn k:() mn mn —_
=(n+1r,,=0(1).
So,
L=0(qs, + 1) if 0<a<l,
n .
=0 <qmn log —+ rm,,> if a=1. (5.3)
Similarly, this time using (4.5iii),
I,=0(q;, + 1) if O<a<l,
T .
= 0 (qmn + rmn lOg > lf A= 1 (54)
By (4.51v),
30 P (7 (" 5 +t
]4 S T ﬁ J"Imn T'mn ds dt
whence for O<a <1,
3n? p
I < mn
! 4(1 - a) qm” rmﬂ Pmn (q’nn m”)

while for a =1,

3n4 prnn
4 qmn mn Pmn

By (3.1), (3.2), and (3.3),

I, <—

T
(qmn log —+ ¥ n IOg
9 mn

- >
rmn

1
P (mA1)n+1) P —o().
qmn rmn Pmn (m + 1 ) qmn( 1 ) rmn Pmn
Consequently,
1,=0(q%,+r%,) if O<a<l,
=0(qm,, log —— + ,,, log ”) if =1 (5.5)

Collecting (5.1)—(5.5) together yields (3.6).



356 MORICZ AND RHOADES

Proof of Theorem 2. We use decomposition (5.1) with ¢, and r,,,
replaced by n/(m + 1) and =/(n + 1), respectively. For brevity, we denote by
Q.., the quantity in braces on the right-hand side of (3.8).

By (4.101), for x>0

wilm 4 1)y rmin+1)
L<(m+)n+1) | (s* +1*) ds di

<0 0

n1+2 1 1
<a+l<(m+l)°‘+(n+1)“>' (58)

Since p, is nonincreasing, we trivially have

Ppz(j+Dk+ 1) py (k=01

Therefore,
1 1 1

= PZZI’/k

(m+1)°‘ (”n‘i‘l)a mn =0 k=0

1 n
L2 G

ST
(m+1) Pmn/ 0k

1 m n Pk
S—“ /
P ; Z‘ G+ k4 1)

and similarly,
1 1 m 44 P/‘k
(n+ 1)0( an /'go kg() (J+ ])(k+ 1)1+1.

Combining (5.6) with the last two inequalities results in

=0(Q,.,) 57)
By (4.10i1),
L < 27IP:"1 g k4 1)
* jz:/rmﬂ)fon(nﬁ)s ul i Pin-xdtds
gnp:,ll)éo (k+1
. {ni 1 :/(”1+I)S l é,o Djn—idS

7.l:aerl 1
N

+
(0(+1)(n+1)1+1-[/(m+1)
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In each integration replace s by 1/u (remembering that o = [1/5]) to get

o(l) & 1 (m+1yn 1 [¥]
=—" k+1
B=20 % {5 ] e

mn k=0

1 (m+1)/n1 [u]
+mj =2 Pin- kdu}

/n u‘,‘:

Then making a simple approximation to the integrals involved yields

o) &
IE—P Z( 1){ +1/Z(1+la+lzp1nk

mn fo=0 O

(n+1)1+1 Z [+1 Z p/]nk}- (58)

/=0 j=0

The first sum on the right is equal to

m

1 n
Y o(k+1) 3

(P, S, ,:0(

1 m

{ n
:(n+1)P,,,,,,§0(1+1 T2 L KD P

FNIGE Z Pin—k

Using the identity

"

non-k
Z (k+1)p/n k= Z Z pjr’

k=0 k=0r=0

we can write

1 "
_(n+l)Plnn/Z[)(l+ )1+1k20/20 rZO p/r
“ . P[n k
(n+1)Pmn/ZokZo [+1) !

(l’l+1)P ZZ [+11+1

mn =0 k= 0

m n P/k
) T+1)y" "kt 1)

mn =0 k= 0

(5.9)

<
P

The second sum in the right-hand side of (5.8) can be dominated in a
similar manner:
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mki”‘“ £ L
. ,zo kzok—ﬂf_f‘(!—:ﬂ' (5.10)
From (5.8)-(5.10) it follows that
=0(Q,.,) (5.11)
In an analogous way, by (4.10iii),
=0(0Q,.,) {5.12)

Using (4.101v),

I,=

o(1) j" f" S+ P dsdr

Pmn nfm+ ) Yr/n+1) st

We replace s by l/u and ¢ by /v, keeping in mind that ¢ =[1/s] and
t=[1/t]. As a result we obtain

0(1) (m+ Lym sln+ 1i/m 1 1
142 P Jvl,r L, uz+lv+uva+1 P[u] [L]du dl]

A natural evaluation of this double integral shows that

m n 1

mn j=0k=0

1
+(]+1)(k+1)°‘+') 0(Q,.,)- (5.13)

Combining (5.1), (5.7}, (5.11}~(5.13} results in (3.8).
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