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We study the rate of uniform approximation by Niirlund means of the rec­
tangular partial sums of the double Fourier series of a functionf(x, y) belonging to
the class Lip a, 0 < a ~ I, on the two-dimensional torus - IT < x, Y ~ IT. As a special
case we obtain the rate of uniform approximation by double Cesaro means.
'I": 1987 Academic Press, Inc.

1. NORLUND SUMMABILITY OF DOUBLE NUMERICAL SEQUENCES

Let .OJ> = {Pik: j, k = 0, 1,00.} be a double sequence of nonnegative num­
bers, Poo> 0. Set

m

Pmn = L L Pik
f~Ok~O

(m, n=O, 1'00')'

Given a double sequence {sik: j, k = 0, 1,oo.} of complex numbers, the
N6r1und means tmn are defined by

(m, n = 0,1'00')'

* This research was completed while the first author was a visiting professor at Indiana
University, Bloomington, Indiana, U.S.A., during the academic year 1983-1984.
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342 M()RICZ AND RHOADES

We say that the Norlund method generated by /1', or simply the /1'­

method of summability, is regular if whenever .I'm" tends to a finite limit s as
m, n ---+ 00 and the .I'm" are bounded for m, n = 0, 1, ... , then t "UI also tends to
the same limits as m, n ---+ 00.

THEOREM A [3, p.39]. Ij'.Y= {Pik?;O:j,k=O, 1,...:1700>0], thellthe
necessary alld sufficient condition.l·f(Jr the reRularity oj' the ,Y-method oj'sum­
mability are

and

lim
HI, n ."f.

"
P"UI k~O Pm

,=0
/.'

(j=O,l, ... :m?;j)

1 m

lim -p I PI" k=O
III.n". I 11/11 1= ()

(k=O,l, ... :n?;k).

The (c, [J, ( )-summability, [J, r> - 1, is a particular case of the Nor­
lund summability, where ,JJ> = {Pik} is given by

(j, k = 0, 1,... )

(even this is a factorable case), where

> _ (:x + /) _ (:x + 1)(:x + 2) ... (:x + /)
A I - / - -----n----

for 1= I, 2, ... and A~ = 1. Then, as is known,

(m, n=O, I, ... ).

Furthermore, there exist two positive constants eland C 2 such that

(1=0, I,...::x> -I)

(see, e.g., [5, p. 77 ] ).

2. NORLUND MEANS FOR DOUBLE FOURIER SERIES

Let f(x, y) be a complex-valued function defined on the two-dimensional
real torus Q: -n<x~n, -n<y~n. IffEL1(Q), then its double Fourier
senes IS

f(x, y);:::" ± (2.1 )
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where

343

I fn fn ..C;k=--2 f(s, t)e-I(Js+kt)dsdt
(2n) - n-n (j,k=.oo, -1,0, 1'00')'

We associate with (2.1) the double sequence of (symmetric) rectangular
partial sums

01 n

Sm//(X, y)= L L C;kei(Jx+h)
i= -01 k=--!1

(m, n = 0,1'00')'

Now, the Norlund means for (2.1) are defined as those for the sequence
{sm//(x, y)}:

1 "' /I

tm//(x, y) =p L L Pm - ;.// ks;d x , .1')
11111 i = 0 k =~ 0

The representation

(m, n = 0, 1'00')'

I fn fltt/////(x, .1') = 2 f(x + s, .I' + t) Km//(s, t) ds dt
n It It

plays a central role, where the Norlund kernel Km//(x, t) is defined by

(2.2)

(m, n=O, 1'00')' (2.3 )

and D)s) and Ddt) are the Dirichlet kernels in terms of sand t, respec­
tively, e.g.,

1; sin(j+-!)s
D)s) = -2 + L cos vs = 2' 1

"~ I Slll2: S

From (2.2) it follows immediately that

(j = 0, 1'00')'

4 flt fntm//(x, y) -f(x, y) =2 ¢Jx,(s, t) Km//(s, t) ds dt
n 0 0

where

¢Jxy(s, t) = ~ {f(x + s:;"'y + t) + f(x - s, y + t) +f(x + s, y - t)

+ f(x-s, y- t)-4f(x, yl}.

640/50/4-4

(2.4 )
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We say that the function f satisfies a Lipschitz condition of order a> 0,
in symbols f E Lipa, if

w(b;f)= sup sup If(x+.I,y+I)-f(x,Y)1
(.Y, 1') EO: Q :,1'2 _+ ,2: 1,2 ()

(6)0) (2.5 )

with a constant C independent of (). The quantity w(b;f) is called the
(total) modulus of continuity off As usual, we consider f as defined over
the two-dimensional real Euclidean space [Rl extended periodically in each
variable (with period 2n:).

Clearly, if f E Lip a for some a > 0, then f is necessarily continuous
everywhere. Only the case 0< a ~ \ is interesting. If a> 1, then of/ox and
af/al' exist and are zero everywhere, so f must be a constant.

Condition (2.5) can be rewritten as

for every real x, y, .1', and I; or equivalently,

If(x +.1', y + I) -f(x, y)1 ~ c(lsl~ + IW)·

Indeed, for every real .1', 1 and 0< a ~ 2

(2.6)

Here the first inequality is the Minkowski one, while the second is trivial.
Condition (2.6) obviously yields

l<Px,(.I', 1)1 ~ C(lsl' + IW)· (2.7)

During the proofs we actually use inequality (2.7) which is, in certain cases,
weaker than (2.6).

3. MAIN RESULTS

We will use the notations

,110 P jk = Pjk - Pj + l,k'

,101 Pjk = Pjk - Pu + I'

and

,1\ I P jk = Pjk - P j + I, k - Pj. k + 1 + PI + I.k + \ U,k=O, \, ... ).
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The double sequence {pid is nondecreasing if AIOPik~O and AOIPik~O,

and is nonincreasing if A lo Pik ~°and A01 Pik ~°for every j, k = 0, 1,.... We
also set

II

qmll=p L Pmk'
11m k =0

1 m

rll1l1 =pL Pill
11111./=0

(m,n=O,I, ... ).

First we consider the case where Pik is nondecreasing. Then

1 IJ1 n

(m+ 1)qIl1l1=- L L Pmk
Pmll i~() k~()

1 1/1 11

~pL L P/k= 1,
JI/1/ I = 0 k = ()

and similarly,

(n + 1) rllm ~ l.

We also have

(3.1 )

(3.2)

Pmll ~ (m + l)(n + I) Pmll (m,n=O,I, ... ).

In the sequel, we need the opposite inequality:

(m + 1)(n + 1) Pmm = O( 1).
Pllnn

(3.3 )

This condition is satisfied, for example, if Pik has a power growth both in j
and in k; i.e.,

for some {3, y~ 0.

Now, condition (3.3) implies that

m+l
~--p-- (n + 1) P1I111 = 0(1) (3.4)

nm

and

(n+ 1) r1l111 = 0(1). (3.5)
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In particular, the conditions of regularity are satisfied:

lim q"m = lim r"/Il = O.
nl.l1 -~ .J

Thus, we may assume that

tn,!I --"x

qm,,<n and rmn<n (m, n=O, 1, ... ).

THEOREM 1. Let {Pik > 0: j, k = 0, 1,... } be a nondecreasing double
sequence such that All P/k is offlxed sign and condition (3.3) is satisfled. If
f E Lipa, 0 <a < 1, then

sup It"",(x, y)-f(x, y)1 = O(q:'/lI+ r:',J
(X.r)E Q

= 0 (qllln log~+ rill" log..!:.-)
qmn rnm

Second we treat the case where Pik is nonincreasing. Then

if O<a< 1,

if a=1

(3.6 )

(cf. (3.1) and (3.2)).

and (n + 1) r mn :( 1 (3.7)

THEOREM 2. Let {Pik ~ 0: j, k = 0, 1,... ; Poo> O} be a nonincreasing
double sequence such that All Pik is offixed sign. Iff E Lipa, 0 < Ct.:( 1, then

sup Itlll,,(x, y) -f(x, y)1
(.\ ..l'iEQ

{
1 '" "( P p)}= 0 - I I . ,:~ +. jk HI' (3.8)

Pn"'i~Ok=O CJ+1) (k+1) (j+1)(k+l) .

In the special case where

we have

lim Pmn > 0,
Hl.lI ~:x

(3.9)

1 :( Poo = O( 1)
(m+1)qmn Pmm

and
I

---=0(1)
(n + 1) r mn

and the right-hand side of (3.8) reduces to that of (3.6).
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if f3 > a and y > a,

if f3 = a and y > a,

COROLLARY 1. Let {Pjk > 0: j, k = 0, I, ... } be a nonincreasing double
sequence such that L1 J J Pjk is of fixed sign and condition (3.9) is satisfied. If
f E Lipa, 0<,1. ~ 1, then statement (3.6) holds.

The approximation rate for (C, /3, y)-summability immediately follows
from Theorem 1 (for /3, y): 1) and Theorem 2 (for a ~ /3, y~ 1).

COROLLARY 2. Iff E Lip a, 0< a ~ 1, and /3, }' ): a, then

I
I III 11 Isup -[1-" L L A::,- lj A;;_l s jk(x,Y)-f(x,y)

(X.")EQ AIllA;'j~Ok~O

_o( 1 + 1 )
(m + 1)' (n + 1)'

_o(IOg(m+2)+ 1 )
(m+l)' (n+l)'

= o(IOg(m + 2) + log(n + 2))
(m + 1)' (n + I)'

if /J=y=CI..

Theorem 1 is an extension of that announced by T. Singh (see [2,
p. 364]) from the one-dimensional case to the two-dimensional case, while
Theorem 2 is an extension of that in [1]. Our method clearly applies to
higher-dimensional Fourier series as well. The extensions of our results
to d-dimensional cases, where d is an integer greater than 2, are
straightforward.

4. ESTIMATION OF THE NORLUND KERNEL

We will use some well-known estimates. For j=O, 1, ...

ID/s)1 <j + 1

For a, b=O, 1,... ; a~b,

for every s. (4.1 )

~ . (. ~) _ cos as - cos (b + 1) s
L. SIll } + 2 s - 2 . J '
j~a SIll 2 s

whence, on account of the inequality

sins'" 2
--):-

s n
(4.2)
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Similarly,

for 0 < S ~ n. (4.3 )

I.
b

IlcosaS~-COS(h+l)SI'\' D(s) = . 0

I~a I (2 Sill! S)~

for 0 < S ~ n. (4.4 )

We note that l/(h + I) LJ~o Di(s) is the Fejer kernel (cf. [5, pp. 49,88]).
The N6rlund kernel K,m,(s, t) is defined by (2.3).

LEMMA I. Let {Pik > O;j, k = 0, I, ... } he a nondecreasing douhle sequence
such that All Pik is olfixed sign. Then

3n
4

Pmn
~ 2 2

4 Pmns t

Proof By (4.1),

for every sand t,

for even' t and 0 < s ~ n,. .

for every sand 0 < t ~ n,

for every 0 < S, t ~ n. (4.5)

1 nl n

IKmn(s, t)1 ~p I I Pm i.n _kID)s)IIDk(t)!
rnnj = 0 k 0

1 m n

~pI I (j+I)(k+I)Pm~j.n k
mn J = 0 k = ()

1 n1 11

= PlIln i~O k~O Pik ~ (m + I)(n + I),

which is (4.5i). The monotonicity of the Pik is not used here.
Again from (4.1),

PlIlnIKm,,(s, t)1 ~ ktO Iito Pm i.nkDi(S)!lDk(t)1

~ ktl (k + I) Iito Pm-Ill kD/(S)\. (4.6)
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For each k, we rewrite the inner sum by an Abel's transformation (see, e.g.,
[5, p. 3]) as

m nil

I Pm_j.n_kD)S)= - I LJIOPm-j,n k I Dls)
j~O j~ 1 ,~O

111

+ PO. 11 . k I D,(s),
,~O

whence, by (4.4) and the assumption that Plk is nondecreasing inj, we get

1

111

,2: Pm ,/.11
I~O

(4.7)

Combining (4.6) and (4.7) yields (5.4ii).
Equation (4.5iii) can be shown in a similar way.
To prove (4.5iv), we first perform a double Abel's transformation (see,

e.g., [4]):

Pmn Knm(s, t)

m 11 j,- I k - I

= I I LJI1Pm 1.11 k I D,,(s) I Dh(t)
i=I/.:=1 a=O h=O

m / -- I 11

- I A10Pm 1,0 I DJs) I Dh(t)
I~l ,,~O h~O

II m k 1

- I LJ OI PO.n k I D,,(s) I Dh(t)
k~ 1 ,,~O h~O

whence, by (4.4),

m 11

+ Poo I DJs) I Dh(t),
,,=0 h~O

(4.8)

m

+ I LJ10Pm
I~ 1

n )
1.0+ k~l LJ 01 PO,n-k+POO . (4.9)
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Since /1 11 Pik is of fixed sign,

01 II

I I ILlI1PIIl
I ~ I k ~- 1

I,ll kl=1 f f LlIIPIIl 1.11 kl
/ I k ~ I

Returning to (4.9), if Ll il PIk :> 0,

n: 4

PIIlII IKmll(s, tll :( 4s 2t2 [(Pmll - PIIlO - POll + Pool

+ (PmO - Poo) + (POll - Pool + Poo]

while if Ll 11 P/k :( 0,

n 4

Pmll IKIll/I(s, t)1 :( 4s 2t2 [( -Pmll + PmO + POll - Pool

+ (PmO - Pool + (POll - Pool + Poo]

LEMMA 2. Let {Pik:> 0: j, k = 0, 1,... ; Poo > O} be a nonincreasing double
sequence such that Ll 1 \ Pik is affixed sign, and let (5= [1/.1']' t= [1/t] where
[ .] means the integral part. Then

IKmn(s, t)1 :( (m + l)(n + 1)

n(n + 1) 1 II (J

:( 2 --p- L (k + 1) I Pi.1I k
mnS k~O i~O

n(n + 1) 1 m r

:( 2 Pi I U+l) I Pm j.k
mn j= 0 k =0

for every sand t,

for every t and 0 < .I' :( n,

for every .I' and 0 < t :( n,

for every 0 < .1', t:( n.

(4.10)
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Proof Equation (4.1 Oi) coincides with (4.5i), which holds without any
monotonicity condition, as we remarked in the proof of Lemma 1.

By (4.6) and (4.2),

PmnIKmn(s, t)1 ~ k~O (k+ 1) I i~O Pm-i,n-kDi(S)1

n n I m ( 1) I~2sk~o(k+l) i~oPi,n-ksin m-)+2 s. (4.11)

A simple estimate shows that, for each k,

litoPi,n kSin(m-)+~)sl

~f Pi,n-k+l. f Pi,n_ksin(m-)+~)sl· (4.12)
/~o I~(J+ 1 -

Using an Abel's transformation,

m (1). L P/,n- k sin m - ) +2 S
/=(1" + I

HI 1

L L1 10 Pi,n
i~(J + 1

k t sin (m - I + ~) S
I~(J+ 1

(4.13 )m ( 1)+ Pm,n k L sin m-l+- s.
I~(J+ I 2

From (4.3), the fact that Pik is nonincreasing in), and that lis < 0" + 1, we
can conclude that

I
111 (1) I n. L Pi,n-k sin m- )+2 s ~~ P(J+ I,n k

I=a+ I

(J

~n(O"+l)P(J+J,n--k~n L Pi,n-k'
i~O

Now, the combination of (4.11), (4.12), and (4.14) provides (4.1 Oii).
Equation (4.1 Oiii) can be deduced similarly.
To prove (4.10iv), by (4.2) we begin with the inequality

(4.14 )

= Iit k~O PikDm-iS) Dn_k(t)1

~~I f f Piksin(m-)+~)ssin(n-k+-21)tl· (4.15)
4st i~O k~O 2
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We divide the double sum into four parts:

For A I' we can perform an Abel's transformation similar to (4.13) and
conclude that

I
. f Plk sin (m -/+~) .1'1
/-=(J+ I

III I 1 I ( I) I:( . I iJ 10 Pik I sin m -I +2 .I'
I (J" t I !=rT+ I

+ Plllk I f sin (111 -I +~) .1'1
I ~,,+ I

(cf. (4.14)), which results in

Analogously,

For A" we perform a double Abel's transformation (cf. (4.8)):

(4.17)

(4.18)

III" ( 1) ( I)I I Pik sin 111-/+ 2 ssin n-k+ 2 I
i=rr+lk=r+l

/III "II iJ1IPjk I sin(m-a+~)sl,_._Ir·+lsin(n-h+~)1
j=o+lk r-t[ a (Ttl
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+ I ~~~ 1 L1, 0 Pin a ~t+, sin ( m - a +~) S h ~t+ , sin ( n - b +~) t

+ nf' A01Pmk I sin(m-a+~)s t sin(n-b+~)t
k~T+ I a~a+ I 2 h~T+ I 2

+Pmn I sin(m-a+~)s f sin(n-b+~)t,
a~a+' 2 h~T+l 2

whence, by (4.3),

1

m 1/ ( 1) ( 1) I. I I Pik sin m - j + 2. s sin n - k + 2. t
j=a+lk=r+!

)n-
=--;r Pa+ '.r+'

)n-
=-t (-2p,"1 + 2pa+ 1.1/ + 2pm.r+ 1- Pa + '.r+')

S

3n 2

":::'-P"st a+ I.r+ I

Thus, in any case,

if L1, I Pik :( O.

a r

:( 3n2 I I Pik = 3n2prw
i~() k "oil

Putting (4.16H 4.19) together yields

Hence (4.15) immediately implies (4.1 Oiv).

(4.19)
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5. PROOFS OF THE THEOREMS

Proolol Theorem 1. We start with representation (2.4), decomposing
the integral as follows:

o
7[-

4If",,,(x, y) -f(x, y)1

:( { fmn I'mn
+ rrnn

+ fmn r
o () qf/1n 0 0 r mn

+ (n (",} I~H(S, f)IIKmn(s, f)1 ds df

say. (5.1 )

Each time ~".(s, f) is estimated by (2.7) and the appropriate estimate of
Lemma 1 is substituted forthe kernel KmnC~, f).

By (4.5), for a> 0

1
1
:( (m + l)(n + 1) Jqn", J'mn (s' + f') ds df

o 0

By (3.4) and (3.5),

By (4.5ii),

whence for 0 < Ct. < 1,

while for a = 1,

(5.2)
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Using (3.5),

= (n + 1) r mn = 0(1).

So,

355

= 0 (qmnl0g~+ rmn )
qn111

Similarly, this time using (4.5iii),

= 0 (qnlll + rmil log ..!!....-)
rmn

By (4.5iv),

if 0 < IX < 1,

if IX = 1.

if 0 < IX < 1,

if IX = 1.

(5.3 )

(5.4 )

3n
4

Pmll fir fir s~ + t~
14 :::; - - -2-2- ds dt,

4 P mn 4mn rmn S t

whence for 0 < IX < 1,

3n 4 Pmll
14 :::; (q~n + r~n)'

4( 1- IX) qmil rmn Pmn

while for IX = 1,

3n
4

Pmn ( n n )14 :::;4 qmnlog-+rmnlog- .
qmn rmn Pmn qmn rmn

By (3.1), (3.2), and (3.3),

Pmn

qmn rmn Pmn

Consequently,

(m+l)(n+l)Pmn =0(1).
(m + 1) qmn(n + 1) rmn Pmn

= 0 (qmnlOg~+ rmnlOg..!!....-)
qmn rmn

Collecting (5.1)-(5.5) together yields (3.6).

if 0 < IX < 1,

if IX = 1. (5.5)
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Prooj' OJ' Theorem 2. We use decomposition (5.1) with qmll and rmll
replaced by n/(m + I) and n/(n + I ), respectively. For brevity, we denote by
Qmn the quantity in braces on the right-hand side of (3.8).

By (4.1 Oi), for 0: > °
II :S;(m+ I)(n+ I) rni

(m11
I

j'Tf/(1l+11 (s'+t')dsdt
'0 n

n' + 1 (I I):s;-- + .
0: + I (m + 1)X (n + I )X

Since Pik is nonincreasing, we trivially have

(5.6)

Pik ? (j + I )(k + 1) Pik

Therefore,

(j, k = 0, 1,... ).

(m+ It

1 m n p.
:< "\'"\' Jk
-..0:- 1... 1... (. l)x+l(k I)'

Pmllj~O k~O } + +
and similarly,

I I m II P
---:<- I I jk
(n + I)' -..0: Pn ", i~O k=0 (j + I)(k + 1)H I'

Combining (5.6) with the last two inequalities results in

(5.7)

By (4.lOii),

I
1

:s;n(n+l) ±(k+l)
2Pmil k~O

f
n fn/(n+ I) S' + t' (J

X -- I Pi,n
n/(m+ I) 0 S j~O

=n(n+l) ±(k+l)
2Pmn k ~O

kdt ds

{
n fn

X s'
n + 1 n/(m+ I)

"
I I Pj,ll_kds
i~O

n' + 1 In 1" }
+ ,+1 - I Pin-k ds .

(o:+l)(n+l) Tf/(m+I)Si~O'
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In each integration replace s by llu (remembering that (J = [lis]) to get

_ 0(1) n {_1_ f(m+ 1)/1[ _1_ [u]
12 - I (k+ 1) a+1 I Pj,n_k du

Pmn k~O n+ 1 1/1[ U j~1

1 f(m+')/1[I[U] }
+ ( + l)a+ I - I Pj,n_k du ,

n 1/1[ Uj~1

Then making a simple approximation to the integrals involved yields

O( 1) 11 {I mIl
12 = Pml1k~o(k+l) n+l/~o(l+lt+lj~oPj,n-k

1 iii 1 I }

+ (n+ It+ 1 I 1+ II Pj,l1-k '
I~O /~o

The first sum on the right is equal to

1" m 1 I

A = (n + 1) Pmn k~0 (k + 1) I~o (l + 1t + I j ~o Pj,n - k

I iii 1 I 11

= (n + 1) Pmn I~() (l + I)H I j~O k~O (k + 1) Pj,n-k'

Using the identity

II 11 11 -- k

I (k+ 1) Pj,n k= I I Pjn
k~O k~() r~O

we can write

The second sum in the right-hand side of (5.8) can be dominated in a
similar manner:
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1 m '1 P
1k

~ Pmn I~O k~O (k + l)H 1(1 + 1)"

From (5.8 )-(5.10) it follows that

In an analogous way, by (4.lOiii),

13 = O(Qmn)'

Using (4.1 Oiv),

0(1 ) fIT fIT S' + t'
14 =-- --- Par ds dt.

Pmn ,,/(m+l) "/('1+1) st

(5.10 )

(5.1I )

(5.12 )

We replace s by l/u and t by 1/u, keeping in mind that (J = [lis] and
T = [lit]. As a result we obtain

_ O( 1) f(m + 1)/" f(." + '1/" (_1_ _1_)
14 - '+1,+ ,+1 p[u],[v]dudu.

Pm" 1/" Ii" U V UU

A natural evaluation of this double integral shows that

O( 1) m " ( 1
14

= Pmnj~Ok~O (j+1)Hl(k+1)

+ (j + 1)(~ + l)H 1) P jk = O(Qmn)'

Combining (5.1), (5.7), (5.11 )-(5.13) results in (3.8).
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